Global Molecular Modelling Market Overview
Molecular Modelling Market was valued at USD 3.3 billion in 2023 and is projected to grow from USD 3.6 billion in 2024 to USD 6.65 billion by 2032, exhibiting a CAGR of 9.10% during the forecast period (2023 - 2032). The rapidly increasing CAGR of this market is attracting organizations in the biotech and pharmaceutical sectors to invest extensively in research, and its increasing use in medication efficacy is the key market driver contributing to market growth and expansion.
Source Secondary Research, Primary Research, MRFR Database, and Analyst Review
Sandbox AQ, an enterprise SaaS provider, has announced that it would publicly introduce its AQBioSim biopharma molecular modeling platform in June 2023. The department engages in partnerships with AstraZeneca, Sanofi, and the University of California, San Francisco (USCF) to advance the development of pharmaceuticals targeting various diseases such as cancer, Alzheimer's, and Parkinson's. The implementation of leapfrog technology by SandboxAQ has the capacity to significantly impact the clinical and preclinical phases of drug development. To surpass traditional methods, the company has established a department dedicated to molecular simulation. The company's collaboration with the USCF utilized its unique Absolute Free Energy Perturbation software to generate numerous forecasts of molecular interactions, enabling rapid discovery of novel therapies for various diseases. This endeavor was undertaken with the aim of discovering innovative chemical constituents for the treatment of neurodegenerative disorders.
In September 2022, scientists from Xi'an Jiaotong University's Medical School utilized an AI-assisted medication design service, powered by China's Huawei Cloud's Pangu medication Molecule Model, to efficiently develop a new and versatile antibacterial medicine within a span of one month. This breakthrough resulted in a significant reduction of 70% in research and development costs. Conducting a comprehensive screening of numerous pharmacological compounds is a crucial aspect in the realm of developing new drugs. Historically, drug screening has been carried out in laboratories by trained experts, resulting in high costs, significant time investment, and frequently unsatisfactory outcomes. Huawei's Cloud Pangu Drug Molecule Model, trained on a dataset of 1.7 billion drug-like molecules, is capable of properly forecasting the physicochemical characteristics of pharmacological substances and assigning them a score indicating their suitability as drugs. Subsequently, the pharmaceutical compounds with the highest scores can be the primary subject of targeted investigation.
The process of developing drugs uses molecular modeling, which explains the creation or manipulation of molecules' three-dimensional shapes and their physical and chemical characteristics. They are employed in the fields of computational biology and material science, as well as the study of the structures and behaviors of molecules. They can only be adequately treated with pharmaceutical drugs that are strong and efficient. In the last few years, this has been the main force behind the development of molecular modeling. Additionally, the global market for molecular modeling is expanding quickly, luring businesses in the biotech and pharmaceutical sectors to make significant R&D investments. Analyzing biological and molecular characteristics uses a wide range of automated methods. The molecular modeling market is accelerating the growth of the research and development industry.
Molecular modeling is a method used in the creation of pharmaceuticals. The prevalence of illnesses, including coronary artery disease, cancer, and infections, is rising, and the market growth for molecular modeling is accelerated by ongoing technological improvement. The increasing demand for molecular modeling and structural biology methods in creating a new generation of pharmaceuticals, as well as the high rates of drug attrition in late-phase clinical trials for pharmaceutical development, significantly impact the industry. Additionally, the market for molecular modeling is positively impacted by the rising elderly population, increased public knowledge of illnesses and treatments, research and development initiatives, improved healthcare infrastructure, and a rise in healthcare spending. It helps describe the creation or modification of molecules, their three-dimensional structures, and their physicochemical characteristics. They aid in the study of molecular behavior and structure. Additionally, they are used in material science and computational biology. To assess the biological & molecular characteristics, many computerized techniques are used.
Despite their usefulness, most commercial molecular models cannot depict intermolecular interactions. Hydrogen bonds are a particularly important attractive attraction connecting a hydrogen atom (donor) in one molecule and an acceptor site on the other side, generally a nitrogen or oxygen atom. Since the strength of these bonds varies with the distance and angle between the acceptor and donor, it is challenging to depict them using conventional molecular models. BasePairPuzzle was developed by professors in Japan in response to this problem. It is a revolutionary type of DNA molecular model that accurately depicts the process of base pairing. At first glance, BasePairPuzzle's puzzle pieces are straightforward illustrations of the nucleobases G, A, C, T, and U. However, these 3D-printed parts have nooks and crannies that may fit large, cylindrical neodymium magnets.
Molecular Modelling Market Trends
- Growing use in medication efficacy is driving the market growth
The rising use of medication efficacy drives market CAGR for Molecular Modelling. Researchers and scientists are increasingly employing molecular modeling tools to evaluate therapeutic effectiveness. They believe this is a more cost-effective and safer method of bringing novel medications to the market sooner. Another reason supporting development in the molecular modeling sector is that an increasing number of individuals worldwide struggle with persistent long-term diseases. Only potent and effective pharmaceutical medications can adequately cure them. This has been a primary driver for development in the molecular modeling sector in the past few years.
Additionally, the worldwide molecular modeling sector has a rapid growth rate attracting organizations in the pharmaceutical and biotech industries to invest extensively in R&D. As a result, an entirely novel class of potent pharmaceuticals has emerged that is far more efficient than their counterparts and can command greater costs. The growing elderly population, more public knowledge of illnesses and treatments, increased research and development efforts, improved healthcare infrastructure, and increased healthcare expenditure all favorably impact the molecular modeling industry.
COVID-19 has a negative impact as certain individuals who got it must be hospitalized, and only a small fraction died. Furthermore, because the antibodies were brief, people who healed from it may contract it again. They may also have long-term negative effects, such as diabetes and severe damage to the brain. COVID-19 has to be stated and governments realized. That is why lockdowns and quarantines were instituted. This was rather successful. However, the virus had a significant impact on numerous businesses. The worldwide marketplace for molecular modeling was no exception. The molecular modeling industry is predicted to increase rapidly in the next years. Many companies needed help to obtain the ingredients and programmers required to create molecular modeling software.
For instance, according to WHO figures released in February 2022, there will be around 50 million persons with epilepsy ly in 2022. According to the research, by 2022, roughly 80% of people with epilepsy will live in countries with low or middle incomes. The prevalence of chronic illnesses in the general population is expected to boost demand for enhanced drug development techniques. Thus, it is anticipated that throughout the projected timeframe, demand for Molecular Modelling will increase due to the rising use in medication efficacy. Thus, driving the Molecular Modelling market revenue.
Molecular Modelling Market Segment Insights
Molecular Modelling Product Insights
Based on Product, the Molecular Modelling market segmentation includes Software and Services. The software category dominated the market, accounting for 51% of market revenue (USD 2.60 Billion) in 2022. Instead of testing treatments on laboratory animals, these corporations may utilize molecular modeling software to determine whether these drugs interact with one another and with the bodies of humans.
Molecular Modelling Application Insights
The Molecular Modelling market segmentation, based on Applications, includes Drug Development, Drug Discovery, and Others. The drug development category generated the highest market revenue of about 56% (USD 2.9 billion) in 2022. Because the average cost of developing new medicine molecules and the period required to progress technological advances are so high, most pharmaceutical firms utilize molecular modeling techniques to create new pharmaceuticals, resulting in industry growth.
Molecular Modelling End-user Insights
Based on End-user, the Molecular Modelling market segmentation includes Pharmaceutical & Biotechnology Companies, Research & Academic Centers. Pharmaceutical & biotechnology companies dominated the market, accounting for 74% of market revenue (USD 3.8 Billion) in 2022. The usage of molecular modeling by biotechnology and pharmaceutical firms is increasing due to increased R&D activities in the development and discovery of drugs.
Figure 1 Molecular Modelling Market, by End-user, 2022 & 2032 (USD Billion)
Source Secondary Research, Primary Research, MRFR Database, and Analyst Review
News
ASU researchers can create streaming technologies for simulations of molecules thanks to NSF funding, and they can also create a software platform that makes it easier to analyze simulated molecular events with a range of time resolutions. Molecular simulations are becoming a more potent tool for studying chemical, biochemical, and biological processes in atomic-level detail due to advancements in computer hardware. The complicated movements of millions of atoms in complex systems are modeled by all-atom molecular dynamics simulations, which also provide microscopic interpretations for measurements from experiments. These simulations capture the functioning mechanisms of the molecular machinery that are necessary for living creatures. Flow diagram for streaming analysis Pathway for streaming analysis is shown in the diagram.
Molecular Modelling Regional Insights
By region, the research provides market insights into North America, Europe, Asia-Pacific, and the Rest of the World. The North American Molecular Modelling market area will dominate this market during the projected timeframe, owing to famous universities and educational organizations advocating freedom of access for scientists conducting research, which will boost the market growth in North America.
Furthermore, the major countries studied in the market report are the US, Canada, German, France, the UK, Italy, Spain, China, Japan, India, Australia, South Korea, and Brazil.
Figure 2 Molecular Modelling Market Share by Region 2022 (USD Billion)
Source Secondary Research, Primary Research, MRFR Database, and Analyst Review
Europe region’s Molecular Modelling market accounts for the second-highest market share due to the Additional clinical trials for the investigation of amino acid structures, Biotech & Pharmaceuticals, and biological computation that have been conducted, which will boost market demand. Further, the German Molecular Modelling market holds the largest market share, and the UK Molecular Modelling market is expected to grow and expand significantly in the European region during the projected timeframe.
The Asia-Pacific Molecular Modelling Market is expected to grow quickly during the projected timeframe. This is due to increasing disposable money, growth in research contract firms, advancements in healthcare infrastructure, and a rise in academic institutes. Moreover, China’s Molecular Modelling market dominates the market share, and the Indian Molecular Modelling market is expected to expand and grow steadily in the Asia-Pacific region during the projected timeframe.
Molecular Modelling Key Market Players & Competitive Insights
Leading market players invested heavily in research and Development (R&D) to scale up their manufacturing units and develop technologically advanced solutions, which will help the Molecular Modelling market grow worldwide. Market participants are also undertaking various organic or inorganic strategic approaches to strengthen and expand their footprint, with significant market developments including new product portfolios, contractual deals, mergers and acquisitions, capital expenditure, higher investments, and strategic alliances with other organizations. Businesses are also coming up with marketing strategies such as digital marketing, social media influencing, and content marketing to increase their scope of profit earnings. The Molecular Modelling industry must offer cost-effective and sustainable options to survive in a highly fragmented and dynamic market climate.
Manufacturing locally to minimize operational expenses and offer aftermarket services to customers is one of the critical business strategies organizations use in the Molecular Modelling industry to benefit customers and capture untapped market share and revenue. The Molecular Modelling industry has recently offered significant advantages to the Life Sciences industry. Moreover, more industry participants are utilizing and adopting cutting-edge Technology has grown substantially. Major players in the Molecular Modelling market, including Cresset Acellera Ltd, Schrodinger LLC (Germany), Optibrium (United Kingdom), Biosolve-IT (Germany), Simulations Plus Inc (USA), Chemical computing group (Canada), Centera LP, OpenEye Scientific Software (USA), Dassault Systems (USA), and Cambridge Crystallographic Data Centre (United Kingdom), are attempting to expand market share and demand by investing in R&D operations to produce sustainable and affordable solutions.
Cadence is a key innovator in electrical system development, with over 30 years of software development experience. SDA Technologies and ECAD, Inc. merged to form it in 1988, headquartered in San Jose, California. It is a renowned EDA and Smart System Design company offering software, hardware, and intellectual property (IP) for electrical design. Cadence Design Systems purchased OpenEye Scientific Software in July 2022 to capitalize on Cadence's analytical software competencies in molecular modeling and prediction.
PerkinElmer, Inc. provides testing, nourishment, ecological, life sciences, and industrial sectors with goods, services, and solutions. Richard S. Perkins & Charles Elmer formed the corporation on April 19, 1937, and it has its headquarters in Waltham, Massachusetts. It works in two divisions Discovery and Analytic Solutions and Diagnostics. It manufactured analytical equipment, genetic screening and diagnostic devices, imaging equipment parts, software, and supplies for various end markets. PerkinElmer released ChemDraw V21 technology in March 2022, allowing academics to quickly develop scientifically sophisticated MS PowerPoint presentations with a single click.
Key Companies in the Molecular Modelling market include
- Cresset Acellera Ltd
- Schrodinger LLC (Germany)
- Optibrium (United Kingdom)
- Biosolve-IT (Germany)
- Simulations Plus Inc (USA)
- Chemical computing group (Canada)
- Centera LP
- OpenEye Scientific Software (USA)
- Dassault Systems (USA)
- Cambridge Crystallographic Data Centre (United Kingdom)
Molecular Modelling Industry Developments
July 2022 Cadence Design Systems purchased OpenEye Scientific Software in July 2022 to capitalize on Cadence's analytical software competencies in molecular modeling and prediction.
March 2022 PerkinElmer released ChemDraw V21 technology in March 2022, allowing academics to quickly develop scientifically sophisticated MS PowerPoint presentations with a single click.
April 2021 Accelera Ltd released a new edition of its chemical dynamics modeling program, ACEMD, in April 2021.
Molecular Modelling Market Segmentation
Molecular Modelling Product Outlook
Molecular Modelling Application Outlook
Molecular Modelling End-User Outlook
- Pharmaceutical & Biotechnology Companies
- Research & Academic Centers
Molecular Modelling Regional Outlook
- North America
- Europe
- Germany
- France
- UK
- Italy
- Spain
- Rest of Europe
- Asia-Pacific
- China
- Japan
- India
- Australia
- South Korea
- Australia
- Rest of Asia-Pacific
- Rest of the World
- Middle East
- Africa
- Latin America
Molecular Modelling Report Scope
Report Attribute/Metric |
Details |
Market Size 2023 |
USD 3.3 Billion |
Market Size 2024 |
USD 3.60 Billion |
Market Size 2032 |
USD 6.64 Billion |
Compound Annual Growth Rate (CAGR) |
9.1% (2023-2032) |
Base Year |
2022 |
Market Forecast Period |
2023-2032 |
Historical Data |
2018- 2022 |
Market Forecast Units |
Value (USD Billion) |
Report Coverage |
Revenue Forecast, Market Competitive Landscape, Growth Factors, and Trends |
Segments Covered |
Product, Application, End-Use, and Region |
Geographies Covered |
North America, Europe, Asia Pacific, and the Rest of the World |
Countries Covered |
The US, Canada, German, France, UK, Italy, Spain, China, Japan, India, Australia, South Korea, and Brazil |
Key Companies Profiled |
Cresset Acellera Ltd, Schrodinger LLC (Germany), Optibrium (United Kingdom), Biosolve-IT (Germany), Simulations Plus Inc (USA), Chemical computing group (Canada), Centera LP, OpenEye Scientific Software (USA), Dassault Systems (USA), and Cambridge Crystallographic Data Centre (United Kingdom) |
Key Market Opportunities |
The rapidly increasing CAGR of this market is attracting organizations in the biotech and pharmaceutical sectors to invest extensively in development and research. |
Key Market Dynamics |
Researchers and scientists use molecular modeling software to examine the efficacy of medications. As it is a cost-effective and less hazardous method of bringing novel medicines to market sooner |
Molecular Modelling Market Highlights:
Frequently Asked Questions (FAQ) :
The Molecular Modelling market size was valued at USD 3.3 Billion in 2023.
The market is projected to grow at a CAGR of 9.1% during the forecast period, 2023-2032.
North America had the largest share of the market
The key players in the market are Cresset Acellera Ltd, Schrodinger LLC (Germany), Optibrium (United Kingdom), Biosolve-IT (Germany), Simulations Plus Inc (USA), Chemical computing group (Canada), Centera LP, OpenEye Scientific Software (USA), Dassault Systems (USA), and Cambridge Crystallographic Data Centre (United Kingdom).
The Software category dominated the market in 2022.
Drug Development had the largest share of the market.